www.5129.net > 在三角形ABC中,内角ABC所对的边分别为ABC,且满足A+√2/2C=Bsin(A+π/4)

在三角形ABC中,内角ABC所对的边分别为ABC,且满足A+√2/2C=Bsin(A+π/4)

三角形ABC的内角A,B,C的对边分别为a,b,c且b_百度知我是按照我理解的题目做的,不知道符合不。你看下吧。sin(π/4+C)= √2/2(sinC + cosC)sin(π/4 + B)= √2/2(si

【在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acos又∵A为三角形内角,∴A= π 3.(2)c=2b,由正弦定理得sinC=2sinB,即 sinC=2sin(π-A-C)=2sin( 2π 3-C)= 3cosC+sinC,∴co

已知在三角形ABC中,内角ABC所对的边分别是abc,且满足2asin2asin(C+π/6) = b+c 根据正弦定理有: 2sinAsin(C+π/6) = sinB+sinC 2sinA{sinCcosπ/6+cosCsinπ/6)

在三角形ABC中,内角ABC所对的边分别为abc,且满足a+√2/2由正弦定理得sinA+(√2/2)sinC=sinBsin(A+π/4) sinA+(√2/2)sin(A+B)=sinB(sinAcosπ/4+cosAsinπ/4) (..

角ABC所对的边分别为abc,且a-c/a+b=sinA-sinB/sin(A+⑴sin(A+B)=sin(180° -C)=sinC, 由正弦定理得:(a-c)/(a+b)=(a-b)/c, ac-c^2=a^2-b^2 , a^2+

已知三角形内角abc的对边分别为abc且满足asin(a+b)/2=b答:1)三角形ABC满足:c/(a+b)+b/(a+c)=1 变形得:ac+c^2+ab+b^2=a^2+ac+ab+bc a^2=b^2+c^2-bc =b^2

在△abc中,内角a,b,c的对边分别为a,b,c,已知C=π/3,若sinC+sin(B-A)=2sin2A sin(B+A)+sin(B-A)=2*2sinAcosA 2sinBcosA=4sinAcosA 2cosA(sinB-2sinA)=0 cosA=0或sinB

已知三角形ABC中,a,b,c分别为角ABC的对边,sin(2C-π/已知三角形ABC中,a,b,c分别为角ABC的对边,sin(2C-π/2)=1/2,且a^2+b^2

C所对的边分别是a,b,c,且满足cos2C-cos2A=2sin(π/在△ABC中,角A,B,C所对的边分别是a,b,c,且满足cos2C-cos2A=2sin(π/3+C)sin(π/3-C). (1)求角A的大小; (2)若a=√3且

在三角形ABC中,a,b,c分别为内角A,B,C的对边_百度知(1)sin^2(派+B)=sin^2(B),cos(派/2+A)=sin(-A)即cos^2(派/2+A)=sin^2(A),sin(派-C)=-sin(C),

友情链接:mdsk.net | bestwu.net | 4405.net | krfs.net | 9213.net | 网站地图

All rights reserved Powered by www.5129.net

copyright ©right 2010-2021。
www.5129.net内容来自网络,如有侵犯请联系客服。zhit325@qq.com